
What you should know about
constraints in PostgreSQL
(and what’s new in 18)
Gülçin Yıldırım Jelínek
PGConf.EU, 22 October 2025

1

2

Insights from pg_constraint1

Temporal keys: WITHOUT OVERLAPS, PERIOD2

NOT NULL as a first-class constraint3

NOT ENFORCED4

Partitioned tables improved5

http://progress_bar_id

3

Select * from me;

Current:
● Product Manager at Xata

● Postgres Contributor

● Co-founder of Prague PostgreSQL Meetup

● Co-founder & General Coordinator of Kadin Yazilimci (Women Devs Turkey)

● Co-founder & Chair of Diva: Dive into AI Conference

Past:
● Board Member at Postgres Europe

● Staff Engineer at EDB, 2ndQuadrant

http://progress_bar_id

4

http://progress_bar_id

What is a constraint?

5

Constraints are rules enforced by the database to ensure data
integrity, they keep your data valid and consistent.

http://progress_bar_id

pg_constraint

6

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Rows in the pg_constraint catalog

7

contype

c CHECK

f FOREIGN KEY

n NOT NULL

p PRIMARY KEY

u UNIQUE

x EXCLUDE

t constraint trigger

http://progress_bar_id

pg_constraint

8

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Column constraints vs table constraints

9

CREATE TABLE products_nov (
 price numeric,
 CHECK (price > 0)
);

CREATE TABLE products_oct (
 price numeric CHECK (price > 0)
);

Column constraint

Table constraint

http://progress_bar_id

Column constraints vs table constraints

10

SELECT
 rel.relname AS table_name,
 c.conname,
 c.contype,
 c.conrelid::regclass AS table_ref,
 c.conkey,
 pg_get_constraintdef(c.oid, true) AS constraint_def
FROM pg_constraint c
JOIN pg_class rel ON rel.oid = c.conrelid
WHERE rel.relname IN ('products_oct', 'products_nov');

http://progress_bar_id

Column constraints vs table constraints

11

-[RECORD 1]--+---------------------------
table_name | products_nov
conname | products_nov_price_check
contype | c
table_ref | products_nov
conkey | {1}
constraint_def | CHECK (price > 0::numeric)
-[RECORD 2]--+---------------------------
table_name | products_oct
conname | products_oct_price_check
contype | c
table_ref | products_oct
conkey | {1}
constraint_def | CHECK (price > 0::numeric)

http://progress_bar_id

pg_constraint

12

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Constraint trigger

13

CREATE CONSTRAINT TRIGGER
● Can be DEFERRABLE and controllable by SET CONSTRAINTS
● Must be an AFTER ROW trigger

○ Cannot be BEFORE or INSTEAD OF
● WHEN conditions are evaluated immediately

○ Not deferred even if the trigger is
● Always row-level (FOR EACH ROW)
● Apply only to plain tables

○ Not to foreign tables
● Stored in pg_constraint with contype = ‘t’

http://progress_bar_id

Constraint trigger

14

User-defined triggers that behave like constraints (sort of)
● MVCC behaviour differs between built-in constraints vs triggers
● Laurenz Albe: “Deferrable trigger would be a better

description.”

https://www.cybertec-postgresql.com/en/triggers-to-enforce-constraints/
http://progress_bar_id

pg_constraint

15

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Domain

16

CREATE DOMAIN email_address AS text
 CHECK (VALUE ~* '^[^@]+@[^@]+\.[^@]+$');

CREATE TABLE users (
 id serial PRIMARY KEY,
 email email_address NOT NULL
);

INSERT INTO users(email) VALUES ('not-an-email');

INSERT INTO users(email) VALUES ('ok@example.com');

http://progress_bar_id

Domain

17

SELECT c.conname,
 pg_get_constraintdef(c.oid, true) AS definition,
 t.typname AS domain_name
FROM pg_constraint c
JOIN pg_type t ON t.oid = c.contypid
WHERE c.contype = 'c'
 AND c.contypid <> 0;

conname | definition | domain_name
--------------+------------------------------------+-------------
 email_address_check | CHECK (VALUE ~* '^[^@]+@[^@]+\.[^@]+$') | email_address

http://progress_bar_id

18

PostgreSQL 18

http://progress_bar_id

19

What’s new?

● Allow the specification of non-overlapping PRIMARY KEY, UNIQUE, and foreign key
constraints.This is specified by WITHOUT OVERLAPS for PRIMARY KEY and UNIQUE, and by
PERIOD for foreign keys, all applied to the last specified column.

● Allow CHECK and foreign key constraints to be specified as NOT ENFORCED. This also
adds column pg_constraint.conenforced.

● Require primary/foreign key relationships to use either deterministic collations or
the the same nondeterministic collations. The restore of a pg_dump, also used by
pg_upgrade, will fail if these requirements are not met; schema changes must be made
for these upgrade methods to succeed.

● Store column NOT NULL specifications in pg_constraint.This allows names to be
specified for NOT NULL constraint. This also adds NOT NULL constraints to foreign
tables and NOT NULL inheritance control to local tables.

● Allow ALTER TABLE to set the NOT VALID attribute of NOT NULL constraints
● Allow modification of the inheritability of NOT NULL constraints.The syntax is ALTER

TABLE --. ALTER CONSTRAINT --. [NO] INHERIT.
● Allow NOT VALID foreign key constraints on partitioned tables.
● Allow dropping of constraints ONLY on partitioned tables. This was previously

erroneously prohibited.

http://progress_bar_id

20

Temporal keys, temporal database?
A time period data type, including the ability to represent time periods with
no end (infinity or forever)

The ability to define valid and transaction time period attributes and
bitemporal relations

System-maintained transaction time

Temporal primary keys, including non-overlapping period constraints

Temporal constraints, including non-overlapping uniqueness and referential
integrity

Update and deletion of temporal records with automatic splitting and
coalescing of time periods

Temporal queries at current time, time points in the past or future, or over
durations

Predicates for querying time periods, often based on Allen's interval
relations

http://progress_bar_id

21

Querying Temporal DataBoris Novikov

“ Queries to a temporal database return
facts that were, are, or will be actual at a
time that may differ from current time.”

http://progress_bar_id

22

Add temporal PK and UNIQUE constraints

● Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints
● PRIMARY KEY (id, valid_at WITHOUT OVERLAPS)
● CREATE EXTENSION IF NOT EXISTS btree_gist;

postgres=# CREATE TABLE rooms (
 room_id int PRIMARY KEY,
 name text NOT NULL
);

CREATE TABLE bookings (
 room_id int NOT NULL REFERENCES rooms(room_id),
 during tstzrange NOT NULL,
 -- Temporal PK: last column uses WITHOUT OVERLAPS
 PRIMARY KEY (room_id, during WITHOUT OVERLAPS)
);
CREATE TABLE
CREATE TABLE

http://progress_bar_id

23

Add temporal PK and UNIQUE constraints

postgres=# INSERT INTO rooms VALUES (101, 'Blue'), (102, 'Green');
INSERT 0 2
postgres=# INSERT INTO bookings VALUES
 (101, tstzrange('2025-09-20 10:00+02', '2025-09-20 11:00+02', '[)')),
 (101, tstzrange('2025-09-20 11:00+02', '2025-09-20 12:00+02', '[)'));
INSERT 0 2

postgres=# INSERT INTO bookings VALUES (101, tstzrange('2025-09-20
10:30+02', '2025-09-20 10:45+02', '[)'));
ERROR: conflicting key value violates exclusion constraint
"bookings_pkey"
DETAIL: Key (room_id, during)=(101, ["2025-09-20
08:30:00+00","2025-09-20 08:45:00+00")) conflicts with existing key
(room_id, during)=(101, ["2025-09-20 08:00:00+00","2025-09-20
09:00:00+00")).

http://progress_bar_id

24

Add temporal PK and UNIQUE constraints

postgres=# INSERT INTO bookings VALUES
 (102, tstzrange('2025-09-20 10:30+02', '2025-09-20 11:30+02', '[)'));
INSERT 0 1

postgres=# INSERT INTO bookings VALUES
 (101, tstzrange('2025-09-20 12:00+02','2025-09-20 12:00+02','[)'));
ERROR: empty WITHOUT OVERLAPS value found in column "during" in
relation "bookings"

http://progress_bar_id

25

Summary: Temporal PK and UNIQUE constraints

● Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints
● Backed by GIST indexes instead of B-tree indexes
● Essentially exclusion constraints with

○ = for the scalar parts of the key
○ && for the temporal part

CONSTRAINT bookings_no_overlap
 EXCLUDE USING gist (
 room_id WITH =, -- same business key
 during WITH && -- ranges overlap
)

● Forbid empties
● Only support ranges and multiranges for PK/UQs

http://progress_bar_id

26

Add temporal FK constraints

● Add PERIOD clause to FK definitions

 CONSTRAINT bookings_fk_availability
 FOREIGN KEY (room_id, PERIOD during)
 REFERENCES room_availability (room_id, PERIOD available)

● Supported for range and multirange types
● Temporal FKs check for range containment instead of equality
● Matches the behavior of SQL standard
● ON {UPDATE,DELETE} {CASCADE,SET NULL,SET DEFAULT} are not supported yet

http://progress_bar_id

27

NOT ENFORCED in CHECK constraints

● Add support for the NOT ENFORCED/ENFORCED flag for constraints, with
support for check constraints

 ALTER TABLE users
 ADD CONSTRAINT email_format CHECK (email ~ '^[^@]+@[^@]+\.[^@]+$') NOT ENFORCED;

● New column: pg_constraint.conenforced
● CHECK constraints do not currently support ALTER operations

○ To change enforceability drop and recreate the constraint

http://progress_bar_id

28

NOT ENFORCED in FK constraints

● Expand NOT ENFORCED constraint flag to foreign key constraints
● NOT ENFORCED

○ Integrity checks are no longer required
○ Triggers will not be created and constraint will be marked as NOT

VALID
● ENFORCED -> NOT ENFORCED

○ Triggers will be dropped
○ The constraint will be marked as NOT VALID

● NOT ENFORCED -> ENFORCED
○ Triggers will be created
○ Constraints will be changed to VALID

http://progress_bar_id

29

Fix collation handling for FKs

● Require primary/foreign key relationships to use either deterministic
collations or the the same nondeterministic collations

● The restore of a pg_dump, also used by pg_upgrade, will fail if these
requirements are not met; schema changes must be made for these upgrade
methods to succeed.

http://progress_bar_id

30

Add pg_constraint rows for NOT NULL constraints

● contype=’n’
● Propagated to other tables:

○ Inheritance
○ Creating/attaching partitions
○ CREATE TABLE .. LIKE

● conislocal and coninhcount (used for CHECK constraints before)
○ Not by constraint name but by name of the column they apply to
○ So constraints names can be different across a hierarchy

● The inheritance status can be controlled
○ If a parent has one, then all children will have it
○ They can be marked NO INHERIT, then children will not inherit

● They show up in \d+

http://progress_bar_id

31

Add pg_constraint rows for NOT NULL constraints

● This also opens the door for allowing UNIQUE+NOT NULL to be used for
functional dependency determination, as envisioned by commit
e49ae8d3bc58. It's likely possible to allow DEFERRABLE constraints as
follow up work, as well.

● https://git.postgresql.org/gitweb/?p=postgresql.git;a=object;h=e49ae8d3b
c58

https://git.postgresql.org/gitweb/?p=postgresql.git;a=object;h=e49ae8d3bc58
https://git.postgresql.org/gitweb/?p=postgresql.git;a=object;h=e49ae8d3bc58
http://progress_bar_id

32

NOT NULL constraints as NOT VALID

● Add NOT NULL without scanning the table
○ ALTER TABLE .. ADD CONSTRAINT .. NOT NULL NOT VALID

● Validate later to avoid ACCESS EXCLUSIVE LOCK
○ ALTER TABLE .. VALIDATE CONSTRAINT .. or
○ ALTER TABLE .. ALTER COLUMN .. SET NOT NULL

● Inheritance
○ Parent VALID -> child can’t stay INVALID
○ Matches ENFORCED / NOT ENFORCED constraint logic

● Catalog behavior
○ Validity stored in pg_constraint.convalidated

● pg_dump/restore
○ Dumps invalid NOT NULLs separately
○ Adds & validates them after data load (like CHECK constraints)

http://progress_bar_id

33

NOT NULL inheritance

● Allow modification of the inheritability of NOT NULL constraints
● ALTER TABLE .. ALTER CONSTRAINT .. SET [NO] INHERIT
● NO INHERIT -> INHERIT

○ Meta-data only change
○ Adds (if missing) a pg_constraint entry

● INHERIT -> NO INHERIT
○ Starting point

■ Parent: conislocal = true, connoinherit = false
■ Child: conislocal = false, coninhcount = 1

○ Postgres does not drop the child constraints
○ The parent constraint stops being their ancestor
○ Each child constraint becomes independent - effectively a local

constraint
■ conparentid = NULL, conislocal = true, coninhcount = 0

http://progress_bar_id

34

NOT VALID FKs on partitioned tables

● Allow NOT VALID foreign key constraints on partitioned tables
● Per-partition validation

○ Validate each partition independently
○ Minimizes lock scope and duration

● Hierarchy-level validation
○ Run once on the parent table
○ Validates all unvalidated child FKs in one go

● Foundation for NOT ENFORCED constraints

http://progress_bar_id

35

DROP ONLY on partitioned tables

● Allow dropping of constraints ONLY on partitioned tables
● ALTER TABLE ONLY parent DROP CONSTRAINT some_constraint

○ Before this was not allowed
○ Now, removes the constraint from the parent only
○ Leaves each partition’s constraint intact
○ Stops future partitions from inheriting that constraint

● ADD ONLY restriction remains
○ You can’t add a constraint only on the partitioned parent with

children present

http://progress_bar_id

36

 ++++ +++++
 +++++++++ ++++++++++
 +++++++++++++ +++++++++++++
 +++++++++++++++= +++++++++++++++
 +++++++++++++++=== +=++++++++++++++++
 +++++++++++++======= =====++++++++++++++++
 +++++++++++++========== ==========+++++++++++++
 +++++++++++++============= =============+++++++++++++
 +++++++++++================= ================+++++++++++++
++++++++++===================== ==================++++++++++++
++++++++++====================== ======================++++++++++
++++++++========================== ========================+=++++++++
++++++++============================ ============================+++++++++
++++++================================ ==============================+=+++++++
++++++================================== =================================+++++++
++++++=================================== ===================================++++++
+++++===================================== =====================================+++++
++++======================================= =======================================++++
 +++== ==++++
 +++=== ===+++
 +=== ===+
 =+=== ===+
 == ==
 == ===
 === ===
 == ===+
 == ==
 ====================================== =======================================
 ===================================== =====================================
 === =================================== =================================== ====
 ======= ================================= ================================= ======
 ========= =============================== =============================== =========
 ============ ============================ ============================ ============
 ============== ========================== =========================== ==============
 ================= ======================= ======================== =================
 =================== ====================== ====================== ===================
 ===================== =================== =================== =====================
 ======================== ================ ================ =======================
 +======================== ============= ============= =========================
 ========================== ========== ========== ==========================
 ++========================== ====== ======= ===========================+
 ++++========================== === === ==========================++++
 +++++========================== ==========================++++
 +++++++======================== ==========================+++++
 +++++++====================== ======================+++++++
 +++++++++=================== ===================++++++++
 ++++++++++=============== ===============+++++++++
 ++++++++++============ ============++++++++++
 +++++++++++======== =========++++++++++
 ++++++++++++==== ====++++++++++++
 +++++++++++++ +++++++++++++
 +++++++++ +++++++++
 ++++++ +++++

Thank you!

Postgres at scale

gulcin@xata.io

xata.io

http://progress_bar_id

