V¢ xata

What you should know about

constraints in PostgreSQL
(and what’s new in 18)

GUilcin Yildirim Jelinek
PGConf.EU, 22 October 2025

Agenda

1 Insights from pg_constraint

2 Temporal keys: WITHOUT OVERLAPS, PERIOD
3 NOT NULL as a first-class constraint

4 NOT ENFORCED

5 Partitioned tables improved

http://progress_bar_id

Select * from me;

Current:

Product Manager at Xata

Postgres Contributor

Co-founder of Prague PostgreSQL Meetup

Co-founder & General Coordinator of Kadin Yazilimci (Women Devs Turkey)

Co-founder & Chair of Diva: Dive into AI Conference

Past:

Board Member at Postgres Europe

Staff Engineer at EDB, 2ndQuadrant

http://progress_bar_id

http://progress_bar_id

What is a constraint?

Constraints are rules enforced by the database to ensure data
integrity, they keep your data valid and consistent.

http://progress_bar_id

pg_constraint

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Rows in the pg_constraint catalog

contype

C CHECK

f FOREIGN KEY
n NOT NULL

P PRIMARY KEY
u UNIQUE

X EXCLUDE

t constraint trigger

http://progress_bar_id

pg_constraint

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Column constraints vs table constraints

CREATE TABLE products_oct (
price numeric CHECK (price > 0) — Column constraint

) ;

CREATE TABLE products_nov (
price numeric, _
CHECK (price > 0) — Table constraint

)

http://progress_bar_id

Column constraints vs table constraints

SELECT
rel.relname AS table_name,
Cc.conname,
c.contype,
c.conrelid: :regclass AS table_ref,
c.conkey,
pg_get_constraintdef(c.oid, true) AS constraint_def
FROM pg_constraint c
JOIN pg_class rel ON rel.oid = c.conrelid
WHERE rel.relname IN ('products_oct', 'products_nov');

http://progress_bar_id

Column constraints vs table constraints

-[RECORD 1]--#----=--—=-"——-—— oo ——
table_name products_nov

conname products_nov_price_check
contype c

table_ref products_nov

conkey {1}

+
|
|
|
|
|
constraint_def | CHECK (price > 0::numeric)
-[RECORD 2 J--4+----------—--——mm oo ——
table_name | products_oct
|
|
|
|
|

conname products_oct_price_check
contype c

table_ref products_oct

conkey {1}

constraint_def | CHECK (price > 0::numeric)

http://progress_bar_id

pg_constraint

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Constraint trigger

CREATE CONSTRAINT TRIGGER

Can be DEFERRABLE and controllable by SET CONSTRAINTS
Must be an AFTER ROW trigger

o Cannot be BEFORE or INSTEAD OF

WHEN conditions are evaluated immediately

o Not deferred even if the trigger 1is

Always row-level (FOR EACH ROW)

Apply only to plain tables

o Not to foreign tables

Stored in pg_constraint with contype = ‘t’

http://progress_bar_id

Constraint trigger

User-defined triggers that behave like constraints (sort of)

e MVCC behaviour differs between built-in constraints vs triggers

e Laurenz Albe: “Deferrable trigger would be a better
description.”

https://www.cybertec-postgresql.com/en/triggers-to-enforce-constraints/
http://progress_bar_id

pg_constraint

The catalog pg_constraint stores check, not-null, primary key,
unique, foreign key, and exclusion constraints on tables. (Column
constraints are not treated specially. Every column constraint is
equivalent to some table constraint.)

User-defined constraint triggers (created with CREATE CONSTRAINT
TRIGGER) also give rise to an entry in this table.

Check constraints on domains are stored here, too.

http://progress_bar_id

Domain

CREATE DOMAIN email_address AS text
CHECK (VALUE ~* 'A[r@]+@[7@]+\.[2@]+S"');

CREATE TABLE users (
id serial PRIMARY KEY,
email email_address NOT NULL

);

INSERT INTO users(email) VALUES ('not-an-email'); ®

INSERT INTO users(email) VALUES ('ok@example.com'); &

http://progress_bar_id

Domain

SELECT c.conname,
pg_get_constraintdef(c.oid, true) AS definition,
t.typname AS domain_name

FROM pg_constraint c

JOIN pg_type t ON t.oid = c.contypid

WHERE c.contype = 'c
AND c.contypid <> 0;

conname | definition | domain_name
______________ +____________________________________+_____________

email_address_check | CHECK (VALUE ~* 'A[r@]+@[*@]+\.[*@]+S') | email_address

http://progress_bar_id

M xata

PostgreSQL 18

http://progress_bar_id

What's new?

Allow the specification of non-overlapping PRIMARY KEY, UNIQUE, and foreign key
constraints.This is specified by WITHOUT OVERLAPS for PRIMARY KEY and UNIQUE, and by
PERIOD for foreign keys, all applied to the last specified column.

Allow CHECK and foreign key constraints to be specified as NOT ENFORCED. This also
adds column pg_constraint.conenfoxrced.

Require primary/foreign key relationships to use either deterministic collations or
the the same nondeterministic collations. The restore of a pg_dump, also used by
pg_upgrade, will fail if these requirements are not met; schema changes must be made
for these upgrade methods to succeed.

Store column NOT NULL specifications in pg_constraint.This allows names to be
specified for NOT NULL constraint. This also adds NOT NULL constraints to foreign
tables and NOT NULL inheritance control to local tables.

Allow ALTER TABLE to set the NOT VALID attribute of NOT NULL constraints

Allow modification of the inheritability of NOT NULL constraints.The syntax is ALTER
TABLE ... ALTER CONSTRAINT ... [NO] INHERIT.

Allow NOT VALID foreign key constraints on partitioned tables.

Allow dropping of constraints ONLY on partitioned tables. This was previously
erroneously prohibited.

19

http://progress_bar_id

Temporal keys, temporal database?

A time period data type, including the ability to represent time periods with
no end (infinity or forever)

The ability to define valid and transaction time period attributes and
bitemporal relations

System-maintained transaction time
Temporal primary keys, including non-overlapping period constraints

Temporal constraints, including non-overlapping uniqueness and referential
integrity

Update and deletion of temporal records with automatic splitting and
coalescing of time periods

Temporal queries at current time, time points in the past or future, or over
durations

Predicates for querying time periods, often based on Allen's interval
relations

QB>

Q&

20

http://progress_bar_id

M xata

“ Queries to a temporal database return
facts that were, are, or will be actual at a
time that may differ from current time.”

Boris Novikov Querying Temporal Data

http://progress_bar_id

Add temporal PK and UNIQUE constraints

Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints
PRIMARY KEY (id, valid_at WITHOUT OVERLAPS)
CREATE EXTENSION IF NOT EXISTS btree_gist;

postgres=# CREATE TABLE rooms (
room_id int PRIMARY KEY,
name text NOT NULL

),

CREATE TABLE bookings (
room_id int NOT NULL REFERENCES rooms(room_id),
during tstzrange NOT NULL,
-- Temporal PK: last column uses WITHOUT OVERLAPS
PRIMARY KEY (room_id, during WITHOUT OVERLAPS)

)

CREATE TABLE

CREATE TABLE

22

http://progress_bar_id

Add temporal PK and UNIQUE constraints

postgres=# INSERT INTO rooms VALUES (161, 'Blue'), (102, 'Green');
INSERT 0 2
postgres=# INSERT INTO bookings VALUES
(101, tstzrange('2025-09-20 10:00+02', '2025-09-20 11:00+02', '[)'))
(101, tstzrange('2025-09-28 11:00+02', '2025-89-20 12:00+02', '[)')):
INSERT 0 2

postgres=# INSERT INTO bookings VALUES (101, tstzrange('2025-069-20
10:30+02', '2025-09-20 10:45+02', '[)'));

ERROR: conflicting key value violates exclusion constraint
"bookings_pkey"

DETAIL: Key (room_id, during)=(161, ["2025-09-20

08:30:00+00", "2025-09-20 08:45:00+00")) conflicts with existing key
(room_id, during)=(101, ["2025-09-20 08:00:00+00", "2025-09-20
09:00:00+00")) .

23

http://progress_bar_id

Add temporal PK and UNIQUE constraints

postgres=# INSERT INTO bookings VALUES
(102, tstzrange('2025-09-20 10:30+02', '2025-09-20 11:30+02', '[)'));
INSERT @ 1

postgres=# INSERT INTO bookings VALUES

(101, tstzrange('2025-09-20 12:00+02', '2025-09-20 12:00+02','[)"'));
ERROR: empty WITHOUT OVERLAPS value found in column "during" in
relation "bookings"

24

http://progress_bar_id

Summary: Temporal PK and UNIQUE constraints

e Add WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints
e Backed by GIST indexes instead of B-tree indexes
e Essentially exclusion constraints with

o = for the scalar parts of the key

o && for the temporal part

CONSTRAINT bookings_no_overlap
EXCLUDE USING gist (

room_id WITH =, -- same business key
during WITH && -- ranges overlap
)

e Forbid empties
e Only support ranges and multiranges for PK/UQs

http://progress_bar_id

Add temporal FK constraints

Add PERIOD clause to FK definitions

CONSTRAINT bookings_fk_availability
FOREIGN KEY (room_id, PERIOD during)
REFERENCES room_availability (room_id, PERIOD available)

Supported for range and multirange types

Temporal FKs check for range containment instead of equality

Matches the behavior of SQL standard

ON {UPDATE,DELETE} {CASCADE,SET NULL,SET DEFAULT} are not supported yet

26

http://progress_bar_id

NOT ENFORCED in CHECK constraints

Add support for the NOT ENFORCED/ENFORCED flag for constraints, with
support for check constraints

ALTER TABLE users
ADD CONSTRAINT email_format CHECK (email ~ 'A[*@]+@[*@]+\.[*@]+S') NOT ENFORCED;

New column: pg_constraint.conenforced
CHECK constraints do not currently support ALTER operations
o To change enforceability drop and recreate the constraint

27

http://progress_bar_id

NOT ENFORCED in FK constraints

Expand NOT ENFORCED constraint flag to foreign key constraints
NOT ENFORCED
o Integrity checks are no longer required
o Triggers will not be created and constraint will be marked as NOT
VALID
ENFORCED — NOT ENFORCED
o Triggers will be dropped
o The constraint will be marked as NOT VALID
NOT ENFORCED — ENFORCED
o Triggers will be created
o Constraints will be changed to VALID

28

http://progress_bar_id

Fix collation handling for FKs

Require primary/foreign key relationships to use either deterministic
collations or the the same nondeterministic collations

The restore of a pg_dump, also used by pg_upgrade, will fail if these
requirements are not met; schema changes must be made for these upgrade
methods to succeed.

29

http://progress_bar_id

Add pg_constraint rows for NOT NULL constraints

contype="n’
Propagated to other tables:
o Inheritance
o Creating/attaching partitions
o CREATE TABLE .. LIKE
conislocal and coninhcount (used for CHECK constraints before)
o Not by constraint name but by name of the column they apply to
o So constraints names can be different across a hierarchy
The inheritance status can be controlled
o If a parent has one, then all children will have it
o They can be marked NO INHERIT, then children will not inherit
They show up in \d+

30

http://progress_bar_id

Add pg_constraint rows for NOT NULL constraints

This also opens the door for allowing UNIQUE+NOT NULL to be used for
functional dependency determination, as envisioned by commit

e49ae8d3bc58. It's 1likely possible to allow DEFERRABLE constraints as
follow up work, as well.

https://git.postgresqgl.org/gitweb/?p=postgresql.git;a=object;:h=e49ae8d3b
c58

31

https://git.postgresql.org/gitweb/?p=postgresql.git;a=object;h=e49ae8d3bc58
https://git.postgresql.org/gitweb/?p=postgresql.git;a=object;h=e49ae8d3bc58
http://progress_bar_id

NOT NULL constraints as NOT VALID

Add NOT NULL without scanning the table

o ALTER TABLE .. ADD CONSTRAINT .. NOT NULL NOT VALID

Validate later to avoid ACCESS EXCLUSIVE LOCK

o ALTER TABLE .. VALIDATE CONSTRAINT .. or

o ALTER TABLE .. ALTER COLUMN .. SET NOT NULL
Inheritance

o Parent VALID — child can’t stay INVALID

o Matches ENFORCED / NOT ENFORCED constraint logic
Catalog behavior

o Validity stored in pg_constraint.convalidated
pg_dump/restore

o Dumps invalid NOT NULLs separately

o Adds & validates them after data load (like CHECK

constraints)

32

http://progress_bar_id

NOT NULL inheritance

Allow modification of the inheritability of NOT NULL constraints
ALTER TABLE .. ALTER CONSTRAINT .. SET [NO] INHERIT
NO INHERIT — INHERIT
o Meta-data only change
o Adds (if missing) a pg_constraint entry
INHERIT — NO INHERIT
o Starting point
m Parent: conislocal = true, connoinherit = false
m Child: conislocal = false, coninhcount = 1
o Postgres does not drop the child constraints
o The parent constraint stops being their ancestor
o FEach child constraint becomes independent - effectively a local
constraint
m conparentid = NULL, conislocal = true, coninhcount = 0

33

http://progress_bar_id

NOT VALID FKs on partitioned tables

Allow NOT VALID foreign key constraints on partitioned tables
Per-partition validation
o Validate each partition independently
o Minimizes lock scope and duration
Hierarchy-level validation
o Run once on the parent table
o Validates all unvalidated child FKs in one go
Foundation for NOT ENFORCED constraints

34

http://progress_bar_id

DROP ONLY on partitioned tables

Allow dropping of constraints ONLY on partitioned tables
ALTER TABLE ONLY parent DROP CONSTRAINT some_constraint

o

o

o

o

Before this was not allowed

Now, removes the constraint from the parent only

Leaves each partition’s constraint intact

Stops future partitions from inheriting that constraint

ADD ONLY restriction remains

(@]

You can’t add a constraint only on the partitioned parent with
children present

35

http://progress_bar_id

Vv xata

Postgres at scale

Thank you!

B9 gulcin@xata.io

@ xata.io

++++
+Htt
+Httt bttt
B
B
+Httt bt

+++++
+Htt bttt
+Htttt bttt

B S

B e o

+Httt b=
B
+Httt bttt
+Htt
++++++

=++++tttttt
S
B

bttt
+++++

http://progress_bar_id

